三角形ABC,E、F三等分AC,BC边上DB=2DC,连接BE,BF,AD相交于H,G,求四边形EF
作者:随然 日期:2010-06-04
题目:三角形ABC,E、F三等分AC,BC边上DB=2DC,连接BE,BF,AD相交于H,G,求四边形EFGH的面积为ABC面积的几分之几?
解:设△ABC的面积=m.连结CG,设△CDG的面积=s,△CFG的面积=t,则△BDG的面积=2s,△AFG的面积=2t,于是有
3s+t=(1/3)m,
s+3t=(1/3)m.
两式相加,得4s+4t=(2/3)m,即s+t=(1/6)m.
也就是四边形CDGF的面积=(1/6)m.
连结CH,设△CDH的面积=x,△CEH的面积=y,则△BDH的面积=2x,△AEH的面积=(1/2)y.于是有
3x+y=(2/3)m…………①
x+(3/2)y=(1/3)m……②
解:设△ABC的面积=m.连结CG,设△CDG的面积=s,△CFG的面积=t,则△BDG的面积=2s,△AFG的面积=2t,于是有
3s+t=(1/3)m,
s+3t=(1/3)m.
两式相加,得4s+4t=(2/3)m,即s+t=(1/6)m.
也就是四边形CDGF的面积=(1/6)m.
连结CH,设△CDH的面积=x,△CEH的面积=y,则△BDH的面积=2x,△AEH的面积=(1/2)y.于是有
3x+y=(2/3)m…………①
x+(3/2)y=(1/3)m……②
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点
作者:随然 日期:2010-06-04
题目:已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
证明:(1)易证GC=DF/2=GE
[直角三角形斜边上的中线等于斜边的一半]∠CGE=2∠GDC+2∠GDE=2∠EDC=90°
(2)连结GA,易证GA=GC,过G作GHAB于H,易证AH=EH,GA=GE
[等腰三角形三线合一定理逆定理],下略
(3)略证:
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
证明:(1)易证GC=DF/2=GE
[直角三角形斜边上的中线等于斜边的一半]∠CGE=2∠GDC+2∠GDE=2∠EDC=90°
(2)连结GA,易证GA=GC,过G作GHAB于H,易证AH=EH,GA=GE
[等腰三角形三线合一定理逆定理],下略
(3)略证: